Temsirolimus induces surfactant lipid accumulation and lung inflammation in mice.

نویسندگان

  • Satoshi Washino
  • Hitoshi Ando
  • Kentarou Ushijima
  • Keiko Hosohata
  • Masafumi Kumazaki
  • Naoko Mato
  • Yukihiko Sugiyama
  • Yutaka Kobayashi
  • Akio Fujimura
  • Tatsuo Morita
چکیده

Interstitial lung disease (ILD) is a well-known adverse effect of mammalian target of rapamycin (mTOR) inhibitors. However, it remains unknown how lung toxicities are induced by mTOR inhibitors. Here, we constructed a mouse model of mTOR inhibitor-induced ILD using temsirolimus and examined the pathogenesis of the disease. Male ICR mice were treated with an intraperitoneal injection of different doses of temsirolimus (3 or 30 mg·kg(-1)·wk(-1)) or vehicle. Temsirolimus treatment increased capillary-alveolar permeability and induced neutrophil infiltration and fibrinous exudate into the alveolar space, indicating alveolar epithelial and/or endothelial injury. It also induced macrophage depletion and the accumulation of excessive surfactant phospholipids and cholesterols. Alveolar macrophage depletion is thought to cause surfactant lipid accumulation. To further examine whether temsirolimus has cytotoxic and/or cytostatic effects on alveolar macrophages and alveolar epithelial cells, we performed in vitro experiments. Temsirolimus inhibited cell proliferation and viability in both alveolar macrophage and alveolar epithelial cells. Temsirolimus treatment caused some signs of pulmonary inflammation, including upregulated expression of several proinflammatory cytokines in both bronchoalveolar lavage cells and lung homogenates, and an increase in lymphocytes in the bronchoalveolar lavage fluid. These findings indicate that temsirolimus has the potential to induce alveolar epithelial injury and to deplete alveolar macrophages followed by surfactant lipid accumulation, resulting in pulmonary inflammation. This is the first study to focus on the pathogenesis of mTOR inhibitor-induced ILD using an animal model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice.

Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood. To investigate the mechanisms that initiate and propagate smoke-induced inflammatio...

متن کامل

Alveolar lipoproteinosis in an acid sphingomyelinase-deficient mouse model of Niemann-Pick disease.

Types A and B Niemann-Pick disease (NPD) are lipid storage disorders caused by the deficient activity of acid sphingomyelinase (ASM). In humans, NPD is associated with the dysfunction of numerous organs including the lung. Gene targeting of the ASM gene in transgenic mice produced an animal model with features typical of NPD, including pulmonary inflammation. To assess mechanisms by which ASM p...

متن کامل

Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice.

Targeted disruption of the surfactant protein (SP) D (SP-D) gene caused a marked pulmonary lipoidosis characterized by increased alveolar lung phospholipids, demonstrating a previously unexpected role for SP-D in surfactant homeostasis. In the present study, we tested whether the local production of SP-D in the lung influenced surfactant content in SP-D-deficient [SP-D(-/-)] and SP-D wild-type ...

متن کامل

Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice.

ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3(Δ/Δ)) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency....

متن کامل

ABCG1 regulates pulmonary surfactant metabolism in mice and men.

Idiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages. ABCG1 is highly expressed in both T2 cells and macrophages. ABCG1-deficient mice accumulate surfactan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 306 12  شماره 

صفحات  -

تاریخ انتشار 2014